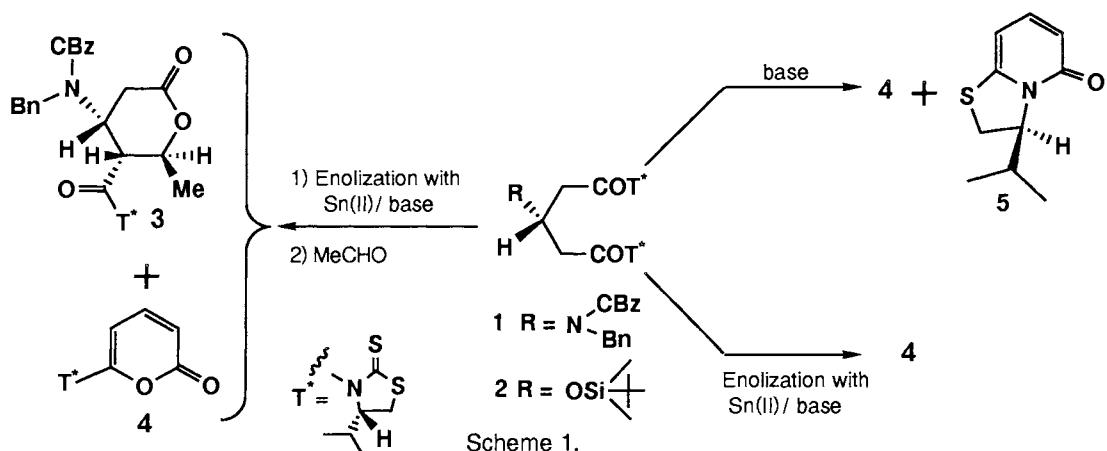


A New Convenient Synthesis of α -Pyrone and α -Pyridone Derivatives

Yoshimitsu NAGAO,* Toshiaki TOHJO,[†] Motoo SHIRO,^{††}
Yusuke YUKIMOTO,[†] and Sadakatsu SHIMADA[†]

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770

[†]Production Technology Research Laboratories, Daiichi Pharmaceutical Co., Ltd.,

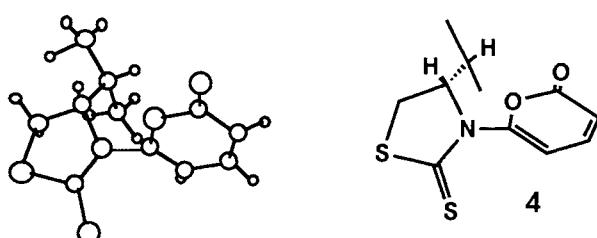

16-13, Kitakasai 1-Chome, Edogawa, Tokyo 134

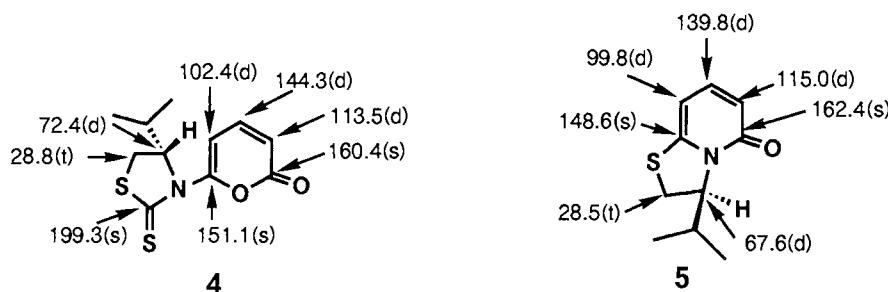
^{††}Rigaku Corporation, 3-9-12, Matsubara-cho, Akishima, Tokyo 196

(4S)-Isopropyl-1,3-thiazolidine-2-thione diamide of 3-(*t*-butyldimethylsilyloxy)glutaric acid was treated with bases to give α -pyrone and α -pyridone derivatives possessing a chiral thiazolidine moiety. On the other hand, treatment of the diamide with $\text{Sn}(\text{CF}_3\text{SO}_3)_2$ and *N*-ethylpiperidine afforded the α -pyrone derivative exclusively.

Naturally occurring α -pyrone derivatives seem to be attractive from the viewpoints of their various physiological activities; cardiac, local anesthetic, antiinflammatory, amebicidal, and anticonvulsive activities.¹⁾ Therefore, a number of α -pyrone derivatives have been synthesized.²⁾ We now describe a convenient synthesis of new α -pyrone and α -pyridone derivatives possessing a chiral thiazolidine moiety.

Recently, we reported that aldol reaction of (4S)-isopropyl-1,3-thiazolidine-2-thione[(4S)-IPTT] diamide **1** of 3-(*N*-benzyl-*N*-benzyloxycarbonyl)aminoglutaric acid with acetaldehyde gave the δ -lactone **3** bearing three consecutive asymmetric centers and a product **4** as a yellow oil (Scheme 1).³⁾ Crystallization of the oily substance from AcOEt -hexane afforded yellow plates [mp 95.5-96 °C, $[\alpha]_D^{23} -305.2^\circ$ (c 1.2, CHCl_3)]. The structure of **4** was determined by its X-ray analysis as an α -pyrone derivative as shown in Fig. 1.⁴⁾ Then,




Fig. 1. Crystallographic structure of 4.

the preparation of **4** has been investigated employing (4*S*)-IPTT diamide **2** of 3-(*t*-butyldimethylsilyloxy)glutaric acid⁵ which seemed to be more suitable for the formation of the α -pyrone moiety than compound **1**. Cyclization reaction of **2** (1 mmol) was attempted in the presence of several bases (1.1 mmol) such as K_2CO_3 , NaH, KH, and $NaCH_2SOCH_3$ in DMF (1 ml), THF (1 ml), or DMSO (1 ml) at room temperature for 1-3 h. Under the basic conditions described above, the α -pyrone derivative **4** (17-37% yields)⁶ and a bicyclic α -pyridone derivative **5** [colorless oil, $[\alpha]_D^{23} +210.5^\circ$ (c 0.5, $CHCl_3$), 44-63% yields]⁷ were obtained respectively (Scheme 1 and Runs 1-4 in Table 1). However, treatment of **2** (1 mmol) with a mixture of $Sn(CF_3SO_3)_2$ (1 mmol)⁸ and *N*-ethylpiperidine (1.1 mmol)⁸ in CH_2Cl_2 (7.5 ml) at -40 °C for 2 h afforded the α -pyrone derivative **4** as a sole product in 63% yield (Run 5 in Table 1). Chemical structure of the α -pyridone derivative **5** was assigned on the basis of the similarity of its 1H and ^{13}C NMR spectra^{6,7} and EI-mass fragmentation mode⁹ to those of the α -pyrone derivative **4** (Figs. 2 and 3).

Table 1. Synthesis of α -Pyrone and α -Pyridone Derivatives, **4** and **5**, from **2**

Run	Reagent	Solvent	Temp °C	Time h	Yield ^a /%	Yield ^a /%
					4	5
1	K_2CO_3	DMF	rt ^b	3	37	44
2	NaH	THF	"/"	1	19	47
3	KH	"/"	"/"	1	17	51
4	$NaCH_2SOCH_3$	DMSO	"/"	1	19	63
5	$Sn(CF_3SO_3)_2$ <i>N</i> -ethylpiperidine	CH_2Cl_2	-40	2	63	none

a) Isolated yield based on (4*S*)-IPTT diamide **2**. b) rt = Room temperature.

Fig. 2. ^{13}C NMR (125.7 MHz, δ ppm in $CDCl_3$ -TMS) spectral data of **4** and **5**.

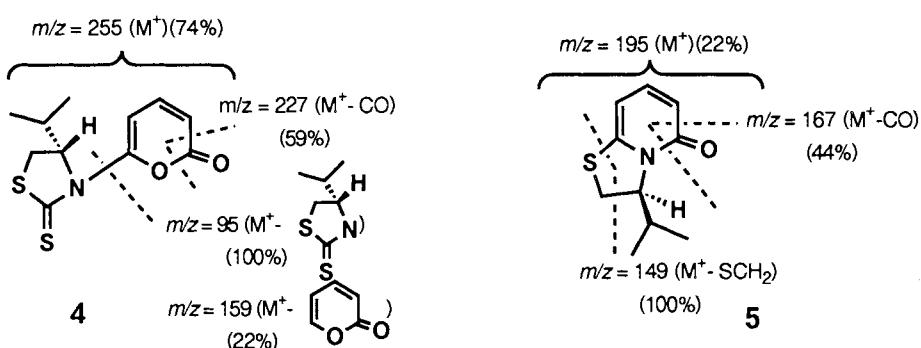
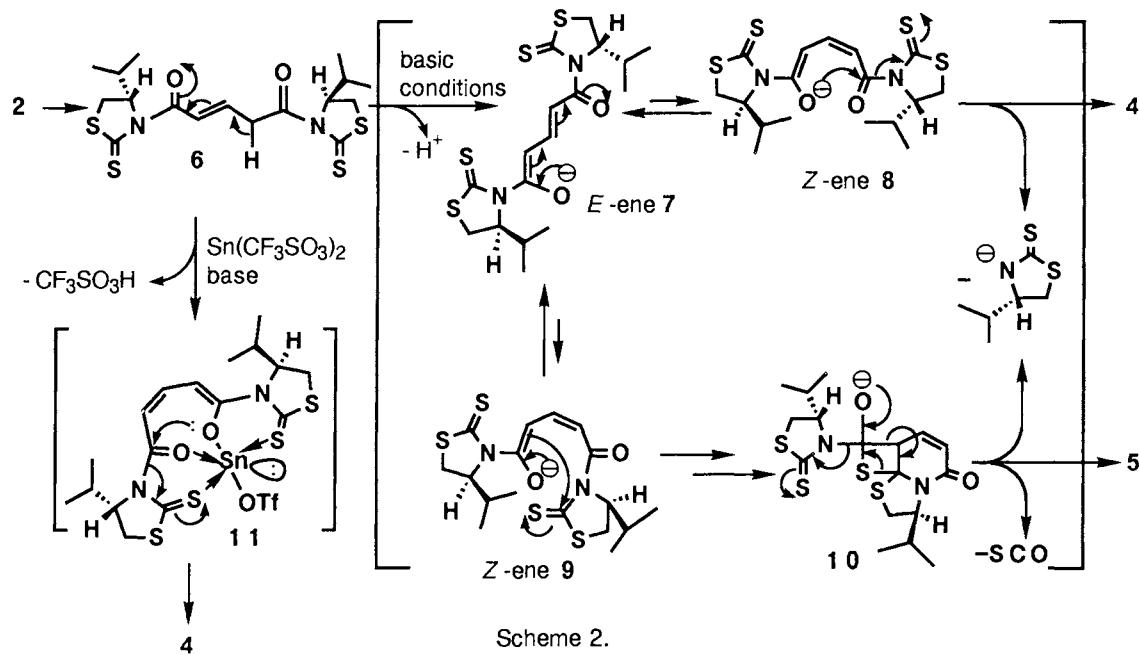



Fig. 3. Fragmentation mode of **4** and **5** on their EI-Mass spectra.

Different reaction aspect of **2** under basic conditions or Sn(II)-promoted conditions may be explained as follows. Elimination of the silyloxy group of **2** affords an *E*- α,β -unsaturated amide **6** which may be converted to two kinds of *Z*-ene enolates **8** and **9** via *E*-ene enolate **7** in the presence of base as shown in Scheme 2. Thus, the compounds **4** and **5** would be derived from each corresponding *Z*-ene enolate **8** or **9** followed by **10** in a characteristic cyclization manner based on the principle of hard base - hard acid specific affinity¹⁰⁾ for the former or soft base - soft acid specific affinity¹⁰⁾ for the latter (Scheme 2). On the other hand, the Sn(II)-promoted cyclization of **2** may proceed via a chelation-controlled transition state **11**, where the enolate oxygen readily attack the neighboring amide carbonyl carbon to give the α -pyrone **4** exclusively (Scheme 2).

Thus, we found a new expedient preparation method for α -pyrone and α -pyridone derivatives (**4** and **5**) which would be promising not only as a candidate of physiologically active agents but also as a chiral synthon for Diels-Alder¹¹⁾ and Michael type reactions.

References

- 1) H. J. Mayer, "Ethnopharmacol. Search Psychoact. Drugs [Proc. Symp.]," (1967), pp. 133-140, *Chem. Abstr.*, **92**, 121862r (1980); U. K. Sonfi, S. Dutta, and C. P. Dutt, *Natl. Acad. Sci. Lett.*, **6**, 271 (1983); R. Kretzschmar and H. J. Meyer, *Arch. Int. Pharmacodyn. Ther.*, **175**, 1 (1968); R. Kretzschmar and H. J. Meyer, *ibid.*, **177**, 261 (1969).
- 2) G. P. Ellis, "Comprehensive Heterocyclic Chemistry," ed by A. J. Boulton and A. McKillop, Pergamon Press, Oxford (1984), Vol. 3, pp. 647-736 and references cited therein.
- 3) Y. Nagao, T. Tohjo, M. Ochiai, and M. Shiro, *Chem. Lett.*, **1992**, 335.
- 4) Crystallographic data of **4**: C₁₁H₁₃NO₂S₂, M=255.35, orthorhombic, space group P2₁2₁2₁, a=9.971(2) Å, b=16.249(3) Å, c=7.738(3) Å, V=1254(1) Å³, Z=4, D_{calc}=1.353 g/cm³, R=0.055.
- 5) Y. Nagao, Y. Hagiwara, Y. Hasegawa, M. Ochiai, T. Inoue, M. Shiro, and E. Fujita, *Chem. Lett.*, **1988**, 381.
- 6) Physical data of **4**: ¹H-NMR (400MHz, CDCl₃) δ 1.00 (3H, d, J=7.2 Hz), 1.01 (3H, d, J=5.6 Hz), 2.18-2.24 (1H, m), 3.20 (1H, dd, 4.8, 11.1 Hz), 3.52 (1H, dd, J=8.7, 11.1 Hz), 5.02-5.06 (1H, m), 6.24 (1H, d, J=9.5 Hz), 6.93 (1H, d, 7.1 Hz), 7.47 (1H, dd, J=7.1, 9.5 Hz); ¹³C-NMR (125.7MHz, CDCl₃) δ 16.6 (q), 19.5 (q), 28.8 (t), 30.8 (d), 72.4 (d), 102.4 (d), 113.5 (d), 144.3 (d), 151.1 (s), 160.4 (s), 199.3 (s); IR 1730, 1630 cm⁻¹; λ_{max} (EtOH) 292, 235, 335 nm; EI-MS m/z 255 (M⁺); HRMS Found: m/z 255.0401. Calcd for C₁₁H₁₃NO₂S₂: M, 255.0388.
- 7) Physical data of **5**: ¹H-NMR (400MHz, CDCl₃) δ 0.93 (3H, d, J=6.8 Hz), 1.03 (3H, d, J=7.3 Hz), 2.6-2.7 (1H, m), 3.19 (1H, d, 11.2 Hz), 3.52 (1H, dd, J=8.3, 11.2 Hz), 5.06 (1H, dd, J=4.9, 8.3 Hz), 6.05 (1H, d, J=6.8 Hz), 6.23 (1H, d, 8.8 Hz), 7.22 (1H, dd, J=6.8, 8.8 Hz); ¹³C-NMR (125.7MHz, CDCl₃) δ 15.9 (q), 18.6 (q), 28.5 (t), 29.2 (d), 67.6 (d), 99.8 (d), 115.0 (d), 139.8 (d), 148.6 (s), 162.4 (s); IR 1640, 1560 cm⁻¹; λ_{max} (EtOH) 245, 330, 340 nm; EI-MS m/z 195 (M⁺); HRMS Found: m/z 195.0694. Calcd for C₁₀H₁₃NOS: M, 195.0718.
- 8) N. Iwasawa and T. Mukaiyama, *Chem. Lett.*, **1983**, 297.
- 9) W. H. Pirkle, *J. Am. Chem. Soc.*, **87**, 3022 (1965).
- 10) T.-L. Ho, "Hard and Soft Acids and Bases Principle in Organic Chemistry," Academic Press, New York (1977).
- 11) G. H. Posner, T. D. Nelson, C. M. Kinter, and N. Johnson, *J. Org. Chem.*, **57**, 4083 (1992); G. H. Posner, H. Vinader, and K. Afarinkia, *ibid.*, **57**, 4088 (1992).

(Received July 27, 1992)